智能手机已经使用基于生物识别的验证系统,以在高度敏感的应用中提供安全性。视听生物识别技术因其可用性而受欢迎,并且由于其多式化性质,欺骗性将具有挑战性。在这项工作中,我们介绍了一个在五个不同最近智能手机中捕获的视听智能手机数据集。考虑到不同的现实情景,这个新数据集包含在三个不同的会话中捕获的103个科目。在该数据集中获取三种不同的语言,以包括扬声器识别系统的语言依赖性问题。这些数据集的这些独特的特征将为实施新的艺术技术的单向或视听扬声器识别系统提供途径。我们还报告了DataSet上的基准标记的生物识别系统的性能。生物识别算法的鲁棒性朝向具有广泛实验的重播和合成信号等信号噪声,设备,语言和呈现攻击等多种依赖性。获得的结果提出了许多关于智能手机中最先进的生物识别方法的泛化特性的担忧。
translated by 谷歌翻译
在这项工作中,我们提出了一种基于ADHOC网络的基于图卷积神经网络(GCN)的调度算法。特别是,我们考虑一个称为$ k $ -tolerant冲突图模型的广义干扰模型,并为众所周知的最大重量调度算法设计了有效的近似。这项工作的一个值得注意的特征是所提出的方法不需要标记的数据集(NP-难以计算)来训练神经网络。相反,我们设计了一种利用现有贪婪方法的损失函数,并列进GCN,提高了贪婪方法的性能。我们广泛的数值实验表明,使用我们的GCN方法,我们可以显着(4美元 - 20美元),提高传统贪婪方法的表现。
translated by 谷歌翻译
The upcoming large scale surveys like LSST are expected to find approximately $10^5$ strong gravitational lenses by analysing data of many orders of magnitude larger than those in contemporary astronomical surveys. In this case, non-automated techniques will be highly challenging and time-consuming, even if they are possible at all. We propose a new automated architecture based on the principle of self-attention to find strong gravitational lenses. The advantages of self-attention-based encoder models over convolution neural networks are investigated, and ways to optimise the outcome of encoder models are analysed. We constructed and trained 21 self-attention based encoder models and five convolution neural networks to identify gravitational lenses from the Bologna Lens Challenge. Each model was trained separately using 18,000 simulated images, cross-validated using 2,000 images, and then applied to a test set with 100,000 images. We used four different metrics for evaluation: classification accuracy, area under the receiver operating characteristic curve (AUROC), the TPR$_0$ score and the TPR$_{10}$ score. The performances of self-attention-based encoder models and CNNs participating in the challenge are compared. They were able to surpass the CNN models that participated in the Bologna Lens Challenge by a high margin for the TPR$_0$ and TPR_${10}$. Self-Attention based models have clear advantages compared to simpler CNNs. They have highly competing performance in comparison to the currently used residual neural networks. Compared to CNNs, self-attention based models can identify highly confident lensing candidates and will be able to filter out potential candidates from real data. Moreover, introducing the encoder layers can also tackle the over-fitting problem present in the CNNs by acting as effective filters.
translated by 谷歌翻译